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Abstract. Group actions are a valuable tool for investigating the
symmetry and automorphism features of near-rings. In this paper, we in-
troduced group action on intuitionistic fuzzy (IF) ideals of near ring N .
We defined intrinsic product of IF ideals of N and investigated some prop-
erties of IF prime ideals under group action on it. Moreover, we developed
an idea of IF G-prime ideal of N . Moreover, we have shown that for an IF
ideal F of N such that FG = ∩

g∈G
Fg, then FG is the largest G-invariant IF

ideal of N contained in F . We additionally prove that G-primeness of FG

is uniquely determined by G-primeness of F upto G-orbits.
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1. Introduction

In order to counteract ambiguity in daily life, Zadeh [1] extended the idea of
classical set theory by introducing the fuzzy set. Many direct and indirect general-
izations of the fuzzy set have been developed and effectively used in the majority of
real-world problems. Pattern recognition, decision-making issues, clustering analy-
sis, and medical diagnostics are just a few of the real-world applications where the
FS theory has been researched. Inadequate knowledge of the function’s negative
membership degree has, regrettably, led to the failure of the FS theory. In order
to solve this issue, Atanassov [2] included the negative membership degree of the
function in FS theory in such a way that sum of the positive membership degree
and negative membership degree must not exceed one. Liu [3] has studied fuzzy
ideals of a ring and many researchers extended this concept. Kim and Kim [4] gave
the notion of fuzzy ideals of near rings. The idea of “Intuitionistic Fuzzy set” as a
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generalization of fuzzy sets was given by Atanassov [2] in 1986. Biswas [5] studied IF
subgroups of a group using the concept of IF sets and extended to group theory. The
concepts of IF prime ideals and IF weak prime ideals in ring were developed by Hur
et al. [6] in a ring. Jun and Park [7] introduced the concept of IF N -subgroups of
a near ring. The features of IF ideals of near rings were also addressed by Jianming
and Xueling [8].

Very recently Asma Ali et al. introduced and studied group action on fuzzy ideals
of a near ring [9]. Lee and Park [10] studied group action on the IF ideals of a ring
R and derived a relationship between the IF G-prime ideals of R and the IF prime
ideals of R. In this paper we define group action on an IF ideals of near ring N and
study G-invariant IF ideals of N , intrinsic products of IF ideals and G-primeness of
IF ideals of N . Hence extend the results of [10] in case of near rings.

2. Preliminaries

For basic definitions of fuzzy ideals and anti fuzzy ideals of a near ring one may
be referred to [11].

Definition 2.1. Let Z be a nonempty set. Then an intuitionistic fuzzy set (briefly,
IF se)t M in Z has a form M = {(z, ηM(z), δM(z))}, where the functions ηM, δM :
Z → [0, 1] signify the degree of membership and non membership respectively and
0 ≤ ηM(z) + δM(z) ≤ 1, z ∈ Z.

For our simplicity we use M = (ηM, δM) for IF set M = {(z, ηM(z), δM(z))|z ∈
Z} in Z.

Definition 2.2. An IF set A = (ηA, δA) in a near ring N is called an intuitionistic
fuzzy ideal (briefly, IF ideal) of N , if ηA and δA are fuzzy ideal and anti fuzzy ideal
respectively.

Lemma 2.3. Let M = (ηM, δM) and N = (ηN , δN ) be IF sets in a set S. Then we
define:

(1) M⊆ N ⇐⇒ (∀s ∈ S)(ηM(s) ≤ ηN (s), δM(s) ≥ δN (s)),
(2) M = N ⇐⇒ M⊆ N and N ⊆M,
(3) M∩N = (ηM

∧
ηN , δM

∨
δN ),

(4) M∪N = (ηM
∨
ηN , δM

∧
δN ).

Definition 2.4. Let A = (ηA, δA) and B = (ηB, δB) be two IF sets in a near ring
N . Then we define the product A ◦ B = (ηA◦B, δA◦B) in N as follows:

ηA◦B(n) :=


∨

n=kl

min {ηA(k), ηB(l)} if n = kl

0 if n is not expressible as n = kl

and

δA◦B(n) :=


∧

n=ab

max {δA(a), δB(b)} if n = ab

1 if n is not expressible as n = ab.

We define the intrinsic product of two IF sets in a near ring N as follows:
Let A = (ηA, δA) and B = (ηB, δB) be two IF sets in a near ring N . Then intrinsic
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product of A = (ηA, δA) and B = (ηB, δB) is defined to be the IF set A ∗ B =
(ηA∗B, δA∗B) in N given by:

ηA∗B(n) :=
∨

n=
∑

finite

aibi

min

{
ηA(a1), ηA(a2), ..., ηA(am)

ηB(b1), ηB(b2), ...., ηB(bm)

and

δA∗B(n) :=
∧

n=
∑

finite

aibi

max

{
δA(a1), δA(a2), ..., δA(am)

δB(b1), δB(b2), ...., δB(bm)

if n =

m∑
i=1

aibi for some ai, bi ∈ N and m ∈ Z+ where each aibi 6= 0. Otherwise

A ∗ B = 0∼, i.e., ηA∗B(x) = 0 and δA∗B(x) = 1.

Lemma 2.5. Let K, L and M be IF ideals of a near ring N . Then

(1) K + L is an IF ideal,
(2) K ∗ (L ∗M) = (K ∗ L) ∗M

Proof. (1) Let K = (ηK, δK) and L = (ηL, δL) be two IF ideals of N . It means that
ηK, ηL are fuzzy ideals and δK, δL are anti fuzzy ideals. We know that K + L is
defined as follows:

K + L = (ηK + ηL − ηKηL, δKδL).

If we show that ηK+ηL−ηKηL is a fuzzy ideal and δKδL is an anti fuzzy ideal, then
we are done. Since ηK and ηL are fuzzy ideals, for any u, v ∈ N , we have

ηK+L(u− v)
= ηK(u− v) + ηL(u− v)− ηK(u− v) · ηL(u− v)
≥ min{ηK(u), ηK(v)}+min{ηL(u), ηL(v)}−min{ηK(u), ηK(v)}·min{ηL(u), ηL(v)}
≥ min{ηK(u) + ηL(u), ηK(v) + ηL(v)} −min{ηK(u) · ηL(u), ηK(v) · ηL(v)}
≥ min{ηK(u) + ηL(u)− ηK(u) · ηL(u), ηK(v) + ηL(v)− ηK(v) · ηL(v)}
≥ min{ηK+L(u), ηK+L(v)}, i.e.,

ηK+L(u− v) ≥ min{ηK+L(u), ηK+L(v)},(2.1)

ηK+L(v + u− v) = ηK(v + u− v) + ηL(v + u− v)− ηK(v + u− v) · ηL(v + u− v)

≥ ηK(u) + ηL(u)− ηK(u) · ηL(u)

≥ ηK+L(u), i.e.,

ηK+L(v + u− v) ≥ ηK+L(u),(2.2)

ηK+L(uv) = ηK(uv) + ηL(uv)− ηK(uv) · ηL(uv)

≥ ηK(v) + ηL(v)− ηK(v) · ηL(v)

= ηK+L(v), i.e.,

ηK+L(uv) ≥ ηK+L(v).(2.3)

3



Ali et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

Also for any u, v, a ∈ N ,

ηK+L((u + a)v− uv) = ηK((u + a)v− uv) + ηL((u + a)v− uv)− ηK((u + a)v− uv)

· ηL((u + a)v− uv)

≥ ηK(a) + ηL(a)− ηK(a) · ηL(a)

= ηK+L(a), i.e.,

ηK+L((u + a)v− uv) ≥ ηK+L(a).(2.4)

Moreover, we will show that δK+L is anti fuzzy ideal of N . Since δK and δL are anti
fuzzy ideals of N , we get

δK+L(u− v) = δK(u− v) · δL(u− v)

≤ max{δK(u), ηK(v)} ·max{δL(u), δL(v)}
≤ max{δK(u) · δL(u), δK(v) · ηL(v)}
= max{δK+L(u), δK+L(v)}, i.e.,

δK+L(u− v) ≤ max{δK+L(u), δK+L(v)}(2.5)

and

δK+L(v + u− v) = δK(v + u− v) · δL(v + u− v)

≤ δK(u) · δL(u)

= δK+L(u), i.e.,

δK+L(v + u− v) ≤ δK+L(u).(2.6)

Also,

δK+L(uv) = δK(uv) · δL(uv)

≤ δK(v) · δL(v)

= δK+L(v), i.e.,

δK+L(uv) ≤ ηK+L(v).(2.7)

Furthermore for any u, v, a ∈ N , we have

δK+L((u + a)v− uv) = δK((u + a)v− uv) · ηL((u + a)v− uv)

≤ δK(a) · δL(a)

= δK+L(a), i.e.,

δK+L((u + a)v− uv) ≤ δK+L(a).(2.8)

Equations (2.1)–(2.4) show that ηK+L is a fuzzy ideal and equations (2.5)–(2.8) show
that δK+L is an anti fuzzy ideal of N . Then K + L is an IF ideal of N .

(2) The proof runs on the same parallel lines as of proposition 3.3 in [7]. �
4
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Definition 2.6 ([12]). A map φ : G × Z→ Z defined by φ(g, z) = g ∗ z, is said to be
an action of group G on a set Z, if for all g, h ∈ G, z ∈ Z,

(i) g ∗ (h ∗ z) = (gh) ∗ z,
(ii) e ∗ z = z, where e is an identity of G.

Definition 2.7 ([12]). If G is a group acts on a set X , then the set

Gx = {ax/a ∈ G}

for x ∈ X , is said to be an orbit of X in G.

We assume that G is a finite group acting on N and define the group action on
an IF set of N as follows:

Definition 2.8. The group action of G on an IF set A of N is given by

Ag = {
〈
x, ηA(xg), δA(xg)

〉
| x ∈ N , g ∈ G}

where xg means g acts on x. For our simplicity, we write Ag as Ag = (ηAg , δAg ) if
A = (ηA, δA) where ηAg (x) = ηA(xg) and δAg (x) = δA(xg).

Example 2.9. N = {m1,m2,m3} is a near ring under following binary operations:

+ m1 m2 m3

m1 m1 m2 m3

m2 m2 m3 m1

m3 m3 m1 m2

· m1 m2 m3

m1 m1 m1 m1

m2 m1 m2 m3

m3 m1 m2 m3

and G = Aut(N ) = {I, f}, where I is an identity automorphism and automorphism
f is defined by

f(m1) = m1, f(m2) = m3 and f(m3) = m2.

ζ, δ : N → [0, 1] defined by

ζ(m) =

{
0.7 m = m1

0.6 m = m2,m3,
δ(m) =

{
0.3 m = m1

0.4 m = m2,m3.

ζ and δ are fuzzy ideal and anti fuzzy ideal of N respectively, then F = (ζ, δ) is an IF
ideal. Group action on fuzzy sets ζg, δg : N → [0, 1] is defined as ζg(m) = ζ(mg) and
δg(m) = δ(mg) respectively. Under this action, we can easily see that Ag = (ζg, δg)
is an IF ideal.

3. IF prime ideals

Definition 3.1. Let P = (ηP , δP) be an IF ideal of a near ring N . Then P is called
an IF prime ideal, if ηP , δP are not constant maps and for any two IF ideals A and
B of N , A ∗ B ⊆ P implies that either A ⊆ P or B ⊆ P.

Example 3.2. Consider N = {0, 1, 2, 3} a near ring under binary operations addi-
tion modulo 4 and for any a1, a2 ∈ N multiplication is defined as

a1 · a2 =

{
a2 a1 6= 0
0 a1 = 0.
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A = (η1, δ1) and B = (η2, δ2) are IF ideals, where fuzzy sets η1, η2, δ1, δ2 : Z4N →

[0, 1] are defined by: for all a ∈ N , η1(a) =

{
0.9 a = 0
0.8 a 6= 0,

η2(a) = 0.9, δ1(a) = 0.1

and δ2(a) =

{
0 a = 0
0.1 a 6= 0.

Here, B is an IF prime ideal of N .

Proposition 3.3. Let Q = (ηQ, δQ) be an IF ideal of N . Then Qg = (ηQg , δQg ) is
also an IF ideal.

Proof. From [Proposition 2 in [9]], ηQg is a fuzzy ideal of N . Then it remains to
prove that δQg is an anti fuzzy ideal of N . Since δQ is an anti fuzzy ideal of N , for
any x, y ∈ N , we have

δQg (x− y) = δQ(x− y)g = δQ(xg − yg) ≤ max(δQ(xg), δQ(yg)), i.e.,

δQg (x− y) ≤ max(δQg (x), δQg (y)))(3.1)

and

δQg (xy) = δQ(xy)g = δQ(xgyg) ≤ max(δQ(xg), δQ(yg)), i.e.,

δQg (xy) ≤ max(δQ(xg), δQ(yg)).(3.2)

Equation (3.1) and (3.2) imply that δQg is an anti fuzzy subnear ring of N .
Again for x, y ∈ N ,

δQg (y + x− y) = δQ(yg + xg − yg) ≤ δQ(x)g = δQg (x).(3.3)

For x, y ∈ N , we have

δQg (xy) = δQ(xy)g = δQ(xgyg) ≤ δQ(yg).(3.4)

This implies that δQg is an anti fuzzy left ideal of N .
Now, for x, y and i ∈ N , we have

δQg ((x+ i)y − xy) = δQ((xg + ig)yg − xgyg) ≤ δQ(ig).(3.5)

Thus Qg = (ηQg , δQg ) is an IF ideal of N . �

Proposition 3.4. Let Q = (ηQ, δQ) be an IF prime ideal of N . Then Qg is also an
IF prime ideal.

Proof. Let A = (ηA, δA) and B = (ηB, δB) be two IF ideals of N such that A ∗ B ⊆
Qg. By proposition 3.3, Ag−1

and Bg−1

are also IF ideals of N . Now, we claim

that Ag−1 ∗ Bg−1 ⊆ Q, i.e., for Ag−1

= (ηAg−1 , δAg−1 ) and Bg−1

= (ηBg−1 , δBg−1 ),
6
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ηAg−1∗Bg−1 ⊆ ηQ and δAg−1∗Bg−1 ⊇ δQ. For every n ∈ N , m ∈ Z+

ηAg−1∗Bg−1 (n) =
∨

n=
∑

finite

aibi

min

{
ηAg−1 (a1), ηAg−1 (a2), · · · , ηAg−1 (am)

ηBg−1 (b1), ηBg−1 (b2), · · · , ηBg−1 (bm)

=
∨

ng−1=
∑

finite

ag−1

i bg
−1

i

min

{
ηA(ag

−1

1 ), ηA(ag
−1

2 ), · · · , ηA(ag
−1

m )

ηB(bg
−1

1 ), ηB(bg
−1

2 ), · · · , ηB(bg
−1

m )

= ηA∗B(ng
−1

) ≤ ηQg (ng
−1

) = ηQ(n), i.e.,

ηAg−1∗Bg−1 (n) ⊆ ηQ
and

δAg−1∗Bg−1 (n) =
∧

n=
∑

finite

aibi

max

{
δAg−1 (a1), δAg−1 (a2), · · · , δAg−1 (am)

δBg−1 (b1), δBg−1 (b2), · · · , δBg−1 (bm)

=
∧

ng−1=
∑

finite

ag−1

i bg
−1

i

max

{
δA(ag

−1

1 ), δA(ag
−1

2 ), · · · , δA(ag
−1

m )

δB(bg
−1

1 ), δB(bg
−1

2 ), · · · , δB(bg
−1

m )

= δA∗B(ng
−1

) ≥ δQg (ng
−1

) = δQ(n), i.e.,

δAg−1∗Bg−1 (n) ⊇ δQ.

This implies that Ag−1 ∗ Bg−1 ⊆ Q. Since Q is an IF prime ideal, either Ag−1 ⊆ Q
or Bg−1 ⊆ Q. Thus A ⊆ Qg or B ⊆ Qg. �

Following the definition of a G-invariant IF ideal of a ring [10], we define a G-
invariant IF ideal of a near ring.

Definition 3.5. Let A = (ηA, δA) be an IF ideal of N . Then A is said to be a G-
invariant IF ideal of N , if ηAg (n) = ηA(ng) ≥ ηA(n) and δAg (n) = δA(ng) ≤ δA(n)
for all g ∈ G and n ∈ N .

Example 3.6. Consider N = {m1,m2,m3,m4} a near ring under following binary
operations:

+ m1 m2 m3 m4

m1 m1 m2 m3 m4

m2 m2 m1 m4 m3

m3 m3 m4 m2 m1

m4 m4 m3 m1 m2

· m1 m2 m3 m4

m1 m1 m1 m1 m1

m2 m1 m1 m1 m1

m3 m1 m1 m1 m1

m4 m1 m1 m2 m2

and G = Aut(N ). Then IF set A = (ηA, δA) in N defined by ηA(m1) = 0.8, ηA(m2) =
0.6, ηA(m3) = ηA(m4) = 0.3 and δA(m1) = 0.2, δA(m2) = 0.3, δA(m3) = δA(m4) =
0.7, is an IF ideal which is G-invariant.

Theorem 3.7. Let F be an IF ideal of N and FG = ∩
g∈G
Fg. Then FG is the largest

G-invariant IF ideal of N contained in F .
7
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Proof. It is clear that FG is an ideal of N , because

FG(n) = ∩
g∈G
Fg(n) = (ηFG(n), δFG(n))

= (min
g∈G

(ηF (ng)),max
g∈G

(δF (ng))).

We know that an IF ideal F of N is G-invariant if and only if F = FG . Assume that
G-invariant IF ideal E contained in F . Then for any g ∈ G and n ∈ N , ηE(ng) =

ηE(n) ≤ ηF (n). Also ηE(n
g) = ηE(n) = ηE(n

g)g
−1 ≤ ηFg (ng), we get

ηE ⊆ ηFG .(3.6)

Also, δE(n
g) = δE(n) ≥ δF (n). Also δE(n

g) = δE(n) = δE(n
g)g
−1 ≥ δFg (ng), we get

δE ⊇ δFG .(3.7)

By equations (3.6) and (3.7), E ⊂ FG . This shows that FG is the largest G-invariant
IF ideal of N . �

The characterization of G-invariant IF ideals can be directly obtained from the
definition. This is summarized in the following remark.

Remark 3.8. An IF ideal F of N is G-invariant IF ideal of N if and only if F = FG.
Clearly follows by definition 3.5.

4. Union of IF ideals

Definition 4.1. If {Fn = (ηFn
, δFn

)} is nonempty collection of IF sets of a near
ring N , then the union of IF sets is defined as⋃

i∈I
Fn = (η ⋃

i∈I
Fi
, δ ⋃

i∈I
Fi

)

where η ⋃
i∈I
Fi

=
∨
i∈I
ηFi

and δ ⋃
i∈I
Fi

=
∧
i∈I
δFi

.

We know that the union of IF ideals of a near ring N is not an IF ideal of N , in
general.

Example 4.2. Let S be a near ring. Then

N =

{(
a1 a2
0 0

) ∣∣∣∣a1, a2, 0 ∈ S
}

is a near ring with respect to matrix addition and matrix multiplication. Take

J1 =

{(
0 a2
0 0

) ∣∣∣∣a2, 0 ∈ S
}

and J2 =

{(
a1 0
0 0

) ∣∣∣∣a1, 0 ∈ S
}

ideals of N.Define maps µ1, µ2, δ1, δ2 : N→ [0, 1] by µ1(x) =

{
0.7 x ∈ J1
0 x 6∈ J1,

µ2(x) ={
0.5 x ∈ J2
0 x 6∈ J2,

δ1(x) =

{
0 x ∈ J1
0.7 x 6∈ J1,

and δ2(x) =

{
0 x ∈ J2
0.5 x 6∈ J2.

Then

8
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A = (µ1, δ1) and B = (µ2, δ2) are IF ideals in N. But A ∪ B is not an IF ideal in N,
since

µ1 ∪ µ2(n) =

{
max{0.7, 0.5} x ∈ J1 ∪ J2
0 x 6∈ IJ ∪ J2

is not a fuzzy ideal of N, for n =

(
0 a2
0 0

)
andm =

(
a1 0
0 0

)
, n−m =

(
−a1 a2

0 0

)
/∈

J1 ∪ J2. We see that µ1 ∪ µ2(n −m) = 0, µ1 ∪ µ2(n) = 0.7 and µ1 ∪ µ2(m) = 0.5.
Thus

µ1 ∪ µ2(n−m) = 0 ≯ max{µ1 ∪ µ2(n), µ1 ∪ µ2(m)}
≯ max{0.7, 0.5}
≯ 0.7.

So µ1 ∪ µ2 is not a fuzzy ideal of N. Hence A ∪ B not an IF ideal of N.

Lemma 4.3. Let P = (ηP , δP) and Q = (ηQ, δQ) be two G-invariant IF ideals of
N . Then P ∗ Q = (ηP∗Q, δP∗Q) is a G-invariant.

Proof. The proof runs on the same parrallel lines as that of Lemma 3.7 in [10]. �

Proposition 4.4. If {Fn} is a chain of IF ideals of N , then for any x, y ∈ N

(i) min(
∨
n

{ηFn(x)},
∨
n

{ηFn(y)}) =
∨
n

{min(ηFn(x), ηFn(y))}.

and

max(
∧
n

{δFn(x)},
∧
n

{δFn(y)}) =
∧
n

{max(δFn(x), δFn(y))},

where Fi = (ηFi , δFi), i ∈ N and ηFi ≤ ηFi+1 , δFi ≥ δFi+1 .

Proof. Assume that u = max(
∧
n
{δFn(x)},

∧
n
{δFn(y)}) <

∧
n
{max(δFn(x), δFn(y))} =

v. Then
∧
n
δFn(x),

∧
n
δFn(y) < v. Thus there exist s and t such that δFs(x) < v and

δFt
(y) < v. So for some m(> s, t), δFs

(x) ≥ δFm
(x) and δFs

(y) ≥ δFm
(y). Hence

max(δFm(x), δFm(y)) < v. Which contradict our assumption
∧
n
{max(δFn(x), δFn

(y))} = v. On the other hand, suppose that u > v. Without loss of generality, we can
assume that u =

∧
n

(δFn(x)). Then there exist somem such that max(δFm(x), δFm(y)) <

u. This contradiction to the fact u ≤ δFm
(x). The equality (i) follows by Proposition

3 in [9]. �

Theorem 4.5. Let {Fn} be a chain of IF ideals of near ring N . Then ∪
n
Fn is an

IF ideal of N .

Proof. Let An = (ηAn
, δAn

) be an IF ideal, where ηAn
, δAn

are fuzzy ideal and anti
fuzzy ideal of N respectively. Then from [Theorem 2 in [9]], η ∪

n∈I
Fn

is a fuzzy ideal

of N . Moreover, by using proposition 4.4, we can easily prove that δ ∪
n∈I
Fn

is an anti

fuzzy ideal. Thus ∪
n
Fn is an IF ideal of N . �

9
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5. IF G-prime ideals

Definition 5.1. Let P be the non constant G-invariant IF ideal of N . Then P is
said to be an IF G-prime ideal, if for any two G-invariant IF ideals A and B of N
such that A ∗B ⊆ P implies that either A ⊆ P or B ⊆ P.

Example 5.2. LetM(Z2) = {f |f : Z2 → Z2} be a near ring under pointwise addi-
tion and multiplication as composition of functions, i.e.,M(Z2) = {0, e, f, g}, where
0, i are zero and identity maps respectively and f, g are defined as f(0) = 1, f(1) = 0
and g(0) = g(1) = 1. Let IF set A = (ηA, δA) defined by ηA(0) = 0.8, ηA(e) =
0.6, ηA(f) = ηA(g) = 0.3 and δA(0) = 0.2, δA(e) = 0.3, δA(f) = δA(g) = 0.7. Then
it is easy to show that A = (ηA, δA) is G-invariant. IF set B = (ηB, δB) in N de-
fined by ηB(0) = 0.7, ηB(e) = 0.5, ηB(f) = ηB(g) = 0.2 and δB(0) = 0.3, δB(e) =
0.4, δB(f) = δB(g) = 0.8 is also G-invariant. We can see that A ∗ B ⊆ A. Thus A is
a G-invariant prime ideal.

Proposition 5.3. If N is a zero symmetric near ring and A1,A2, · · · ,Ap are IF
ideals of N , then

A1 ∗ A2 ∗ · · · ∗ Ap ⊆ A1 ∩ A2 ∩ · · · ∩ Ap.

Proof. Let Ai = (ηAi
, δAi

) be IF ideal of N . Then intrinsic product A1 ∗ A2 =
(ηA1∗A2

, δA1∗A2
) in N is given by

ηA1∗A2
(n) =

∨
x=

∑
finite

aibi

min

{
ηA1(a1), ηA1(a2), · · · , ηA1(am)

ηA2
(b1), ηA2

(b2), · · · , ηA2
(bm),

δA1∗A2
(n) =

∧
x=

∑
finite

aibi

max

{
δA1(a1), δA1(a2), · · · , δA1(am)

δA2
(b1), δA2

(b2), · · · , δA2
(bm)

and

A1 ∩ A2 = (min(ηA1
, ηA2

),max(δA1
, δA2

)).

We have to show that ηA1∗A2
⊆ min(ηA1

, ηA2
) and δA1∗A2

⊆ max(δA1
, δA2

). We
prove this result by method of mathematical induction.

For p = 1, it is obvious.
For p = 2, A1 = (ηA1

, δA1
) and A2 = (ηA2

, δA2
). Let n be expressible as n =

a1b1 + a2b2 + · · ·+ ambm, where ai, bi ∈ N and aibi 6= 0. Then

min{ηA1(a1), ηA1(a1), · · · , ηA1(am), ηA2(b1), ηA2(b2), · · · , ηA2(bm)}
≤ min{ηA2

(b1), ηA2
(b2), · · · , ηA2

(bm)}
Since ηA2

is fuzzy ideal, we have

min{ηA2
(b1), ηA2

(b2), · · · , ηA2
(bm)} ≤ min{ηA2

(a1b1), ηA2
(a2b2), · · · , ηA2

(ambm)}
≤ ηA2

(a1b1 + a2b2 + · · ·+ ambm), i.e.,

min{ηA1
(a1), ηA2

(a1), · · · , ηA1
(am), ηA2

(b1), ηA2
(b2), · · · , ηA2

(bm)} ≤ ηA2
(n)

(5.1)
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and

min{ηA1
(a1), ηA1

(a1), · · · , ηA1
(am), ηA2

(b1), ηA2
(b2), · · · , ηA2

(bm)}
≤ min{ηA1

(a1), ηA1
(a2), · · · , ηA1

(am)}.

Since N is a zero symmetric near ring and ηA1 is a fuzzy ideal, we get
min{ηA1(a1), ηA1(a2), · · · , ηA1(am)}

≤ min{ηA1
((0+a1)b1−0b1), ηA1

((0+a2)b2−0b2), · · · , ηA1
((0+am)bm−0bm)}

≤ ηA1
(a1b1 + a2b2 + · · ·+ ambm).

Thus

min{ηA1
(a1), ηA2

(a1), · · · , ηA1
(am), ηA2

(b1), ηA2
(b2), · · · , ηA2

(bm)} ≤ ηA1
(n).

(5.2)

Furthermore, we get
max{δA1

(a1), δA1
(a1), · · · , δA1

(am), δA2
(b1), δA2

(b2), · · · , δA2
(bm)}

≥ max{δA2
(b1), δA2

(b2), · · · , δA2
(bm)}

≥ max{δA2
(a1b1), δA2

(a2b2), · · · , ηA2
(ambm)}

≥ δA2(a1b1 + a2b2 + · · ·+ ambm), i.e.,

max{δA1
(a1), δA2

(a1), · · · , δA1
(am), δA2

(b1), δA2
(b2), · · · , δA2

(bm)} ≥ δA2
(n)

(5.3)

and
max{δA1

(a1), δA1
(a1), · · · , δA1

(am), δA2
(b1), δA2

(b2), · · · , δA2
(bm)}

≥ max{δA1(a1), δA1(a2), · · · , δA1(am)}
≥ max{δA1((0+a1)b1−0b1), δA1((0+a2)b2−0b2), · · · , ηA2((0+am)bm−0bm)}
≥ δA1

(a1b1 + a2b2 + · · ·+ ambm), i.e.,

max{δA1(a1), δA2(a1), · · · , δA1(am), δA2(b1), δA2(b2), · · · , δA2(bm)} ≥ δA1(n).

(5.4)

It follows from the equation (5.1) that

ηA1∗A2(n) =
∨

x=
∑

finite

aibi

min

{
ηA1

(a1), ηA1
(a2), · · · , ηA1

(am)

ηA2
(b1), ηA2

(b2), · · · , ηA2
(bm)

≤ min{ηA1
(a1), ηA1

(a2), · · · , ηA1
(am), ηA2

(b1), ηA2
(b2), · · · , ηA2

(bm)}
≤ ηA2

(n), i.e.,

ηA1∗A2(n) ≤ ηA2(n)(5.5)

and from the equation (5.3),

δA1∗A2
(n) =

∧
x=

∑
finite

aibi

max

{
δA1(a1), δA1(a2), · · · , δA1(am)

δA2(b1), δA2(b2), · · · , δA2(bm)

≥ max{δA1(a1), δA1(a2), · · · , δA1(am), δA2(b1), δA2(b2), · · · , δA2(bm)}
≥ δA2

(n), i.e.,

11
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δA1∗A2
(n) ≥ δA2

(n).(5.6)

Similarly, we can show that

ηA1∗A2
(n) ≤ ηA1

(n)(5.7)

δA1∗A2
(n) ≥ δA1

(n).(5.8)

From the equations (5.5), (5.6), (5.7) and (5.8), ηA1∗A2(n) ≤ {ηA1(n), ηA2(n)} and
δA1∗A2(n) ≥ max{δA1(n), δA2(n)}. So A1 ∗ A2 ⊆ A1 ∩ A2.

Now assume that it is true for p = k. We have to show that it will be true for
k + 1.
Let n ∈ N . Then we have

min{ηA1∗A2∗···∗Ak
(a1), ηA1∗A2∗···∗Ak

(a2), · · · , ηA1∗A2∗···∗Ak
(am),

ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)}

≤ min{ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)}

≤ min{ηAk+1
(a1b1), ηAk+1

(a2b2), · · · , ηAk+1
(ambm)}

≤ ηAk+1
(a1b1 + a2b2 + · · ·+ ambm).

Thus we get
(5.9)
min{ηA1∗A2∗···∗Ak

(a1), · · · , ηA1∗A2∗···∗Ak
(am), ηAk+1

(b1), ηAk+1
(b2), · · · , ηAk+1

(bm) ≤ ηAk+1
(n).

Since ηAi
is fuzzy ideal for all 1 ≤ i ≤ p, we have

min{ηA1∗A2∗···∗Ak
(a1), ηA1∗A2∗···∗Ak

(a2), · · · , ηA1∗A2∗···∗Ak
(am),

ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)}

≤ min{ηA1∗A2∗···∗Ak
(a1), ηA1∗A2∗···∗Ak

(a2), · · · , ηA1∗A2∗···∗Ak
(am)}

≤ min[min{ηA1
(a1), ηA2

(a1), · · · , ηAk
(a1)}, · · · ,min{ηA1

(am), ηA2
(am), · · · , ηAk

(am)}]
≤ min[min{ηA1

((0 + a1)b1 − 0b1), · · · , ηAk
((0 + a1)b1 − 0b1)}, · · · ,min{ηA1

((0 +
am)bm − 0bm), · · · , ηAk

((0 + am)bm − 0bm)}]
≤ min[min{ηA1(a1b1), · · · , ηAk

(a1b1)}, · · · ,min{ηA1(ambm), · · · , ηAk
(ambm)}]

≤ min{ηA1(a1b1+a2b2+· · ·+ambm), ηA2(a1b1+a2b2+· · ·+ambm), · · · , ηAk
(a1b1+

a2b2 + · · ·+ ambm)}, i.e.,

min{ηA1∗···∗Ak
(a1), · · · , ηA1∗···∗Ak

(am), ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)} ≤ min{ηA1

(n), · · · , ηAk
(n)}.

(5.10)

ηA1∗A2∗···∗Ak∗Ak+1
(n) ≤ min{ηA1∗A2∗···∗Ak

(n), ηAk+1
(n)}

≤ min[min{ηA1
(n), ηA2

(n), · · · , ηAk
(n)}, ηAk+1

(n)]

≤ min{ηA1
(n), ηA2

(n), · · · , ηAk
(n), ηAk+1

(n)}.

It follows from the equation (5.10),

η(A1∗A2∗···∗Ak)∗Ak+1
(n) =

∨
n=

∑
finite

aibi

min

{
ηA1∗A2∗···∗Ak

(a1), ηA1∗A2∗···∗Ak
(a2), · · · , ηA1∗A2∗···∗Ak

(am)

ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)

≤ min

{
ηA1∗A2∗···∗Ak

(a1), ηA1∗A2∗···∗Ak
(a2), · · · , ηA1∗A2∗···∗Ak

(am)

ηAk+1
(b1), ηAk+1

(b2), · · · , ηAk+1
(bm)

≤ min{ηA1(n), ηA2(n), · · · , ηAk
(n)}

12



Ali et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

i.e.,

η(A1∗A2∗···∗Ak)∗Ak+1
(n) ≤ min{ηA1

(n), ηA2
(n), · · · , ηAk

(n)}.(5.11)

In the similar manner

η(A1∗A2∗···∗Ak)∗Ak+1
(n) ≤ ηAk+1

(n).(5.12)

By equations (5.11) and (5.12),

η(A1∗A2∗···∗Ak)∗Ak+1
(n) ≤ min[min{ηA1

(n), ηA2
(n), · · · , ηAk

(n)}, ηAk+1
(n)].(5.13)

Also,

max{δA1∗A2∗···∗Ak
(a1), δA1∗A2∗···∗Ak

(a2), · · · , δA1∗A2∗···∗Ak
(am), δAk+1

(b1), ηAk+1
(b2), · · · , δAk+1

(bm)}
≥ max{δA1∗A2∗···∗Ak

(a1), δA1∗A2∗···∗Ak
(a2), · · · , δA1∗A2∗···∗Ak

(am)}
≥ max[max{δA1(a1), δA2(a1), · · · , δAk

(a1)}, · · · ,max{δA1(am), δA2(am), · · · , δAk
(am)}]

≥ max[max{δA1((0 + a1)b1 − 0b1), · · · , δAk
((0 + a1)b1 − 0b1)}, ..,max{δA1((0 + am)bm − 0bm), ..

.., δAk
((0 + am)bm − 0bm)}]

≥ max[max{δA1
(a1b1), ..., δAk

(a1b1)}, .., δA1
(ambm), .., δAk

(ambm)]

≥ max[max{δA1
(a1b1), δA1

(a2b2), ..., δAk
(a1b1)}, .., δA1

(ambm), .., δAk
(ambm)]

≥ max{δA1(a1b1 + a2b2 + · · ·+ ambm), δA2(a1b1 + a2b2 + · · ·+ ambm), .., δAk
(a1b1 + a2b2

+ · · ·+ ambm)}.
i.e.,

max{δA1∗A2∗···∗Ak
(a1), δA1∗A2∗···∗Ak

(a2), ..., δA1∗A2∗···∗Ak
(am), δAk+1

(b1), δAk+1
(b2), ..., δAk+1

(bm)}
≥ max{δA1

(n), δA2
(n), .., δAk

(n)}.

(5.14)

Now,

δ(A1∗A2∗···∗Ak)∗Ak+1
(n) =

∧
n=

∑
finite

aibi

max

{
δA1∗A2∗···∗Ak

(a1), δA1∗A2∗···∗Ak
(a2), ..., δA1∗A2∗···∗Ak

(am),

δAk+1
(b1), δAk+1

(b2), ...., δAk+1
(bm),

≥ max

{
δA1∗A2∗···∗Ak

(a1), δA1∗A2∗···∗Ak
(a2), ..., δA1∗A2∗···∗Ak

(am),

δAk+1
(b1), δAk+1

(b2), ...., δAk+1
(bm),

≥ max{δA1(n), δA2(n), ...., δAk
(n)}

i.e.,

δ(A1∗A2∗···∗Ak)∗Ak+1
(n) ≥ max{δA1(n), δA2(n), ...., δAk

(n)}(5.15)

and

δ(A1∗A2∗···∗Ak)∗Ak+1
(n) ≥ δAk+1

(n).(5.16)

So, by equations (5.15) and (5.16)

δ(A1∗A2∗···∗Ak)∗Ak+1
(n) ≥ max[max{δA1

(n), δA2
(n), ..., δAk

(n)}, δAk+1
(n)]

≥ max{δA1
(n), δA2

(n), ..., δAk
(n), δAk+1

(n)}

δ(A1∗A2∗···∗Ak)∗Ak+1
(n) ≥ max{δA1(n), δA2(n), ..., δAk

(n), δAk+1
(n)}.(5.17)
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From equations (5.13) and (5.17)

A1 ∗ A2 ∗ · · · ∗ Ap ⊆ A1 ∩ A2 ∩ · · · ∩ Ap.

�

Theorem 5.4. If Q is an IF prime ideal of N . Then QG is an IF G-prime ideal
of N . Conversely, if P is an IF G-prime ideal of N , then there exists an IF prime
ideal Q of N such that QG = P, where Q is unique up to its G-orbit.

Proof. Suppose that Q is an IF prime ideal of N and Q1,Q2 are G-invariant IF
ideals of N such that Q1 ∗ Q2 ⊆ QG . Since QG ⊆ Q, it follows that Q1 ∗ Q2 ⊆ Q.
Then the primeness of Q implies that either Q1 ⊆ Q or Q2 ⊆ Q. By Theorem 3.7,
either Q1 ⊆ QG or Q2 ⊆ QG . Thus QG is IF G-prime ideal.

Conversely, suppose that P is an IF G-prime ideal of N and consider

T = {A, an IF ideal of N|AG ⊆ P}.

Since PG ⊆ P, then T is not empty. Let C = {Ai} be chain of IF ideals of N in
T. Then ∪Ai is an IF ideal of N . Furthermore, (∪Ai)

G ⊆ P. Let ∪Ai = (η, δ) and
P = (ηP , δP). Then η =

∨
i

ηAi
and δ =

∧
i

δAi
, where Ai = (ηAi

, δAi
). For every

n ∈ N ,

ηG(n) = min
g∈G

(
∨
i

(ηAi
(ng)))

=
∨
i

(min
g∈G

(ηAi
(ng)))

≤ ηP(n),

since each AGi ⊆ P. Also

δG(n) = max
g∈G

(
∧
i

(δAi
(ng)))

=
∧
i

(max
g∈G

(δAi
(ng)))

≥ δP(n),

By Zorn’s lemma, let Q be a maximal IF ideal and B1, B2 are IF ideals of N such
that B1 ∗ B2 ⊆ Q. Then (B1 ∗ B2)G ⊆ QG ⊂ P, since BG1 ∗ BG2 ⊆ B1 ∗ B2 and BG1 ∗ BG2
is G− invariant,

BG1 ∗ BG2 ⊆ (B1 ∗ B2)G .

Thus BG1 ∗BG2 ⊆ (B1 ∗B2)G ⊆ P implies BG1 ⊆ P or BG2 ⊆ P. By the maximality of Q,
either B1 ⊆ Q or B2 ⊆ Q. So Q is IF prime ideal. Since P ⊆ Q,PG ⊆ QG , QG = P.

Let there exist another IF prime idealM of N such thatMG = P. Also ∗
g∈G
Qg ⊆

∩
g∈G
Qg = QG ⊆M,Qg ⊆M for some g ∈ G by the primeness ofM. ThenQ ⊆Mg−1

and Q = Mg−1

since (Mg−1

)G = MG ⊆ P implies that M is contained in the set
T. Thus Q is unique upto G- orbits. �
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6. Conclusion

The exploration of IF prime ideals of near rings is an evolving field of study with
many potential applications. In this manuscript, we have introduced and investi-
gated group action on IF ideals of near ring. Furthermore, we have shown that how
an IF prime ideal is related to IF G-prime ideal of N . In future, we may extend this
work for more general structure like picture fuzzy ideal of near ring, intuitionistic
fuzzy ideal of semi rings.

Data Availability Statement: There is no data set that relates with this manu-
script.
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