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ABSTRACT. Group actions are a valuable tool for investigating the
symmetry and automorphism features of near-rings. In this paper, we in-
troduced group action on intuitionistic fuzzy (IF) ideals of near ring N.
We defined intrinsic product of IF ideals of A" and investigated some prop-
erties of IF prime ideals under group action on it. Moreover, we developed
an idea of IF G-prime ideal of N'. Moreover, we have shown that for an IF

ideal F of A/ such that F9 = ﬂg}' 9, then F' 9 is the largest G-invariant IF
g€

ideal of ' contained in F. We additionally prove that G-primeness of F¢
is uniquely determined by G-primeness of F upto G-orbits.
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1. INTRODUCTION

In order to counteract ambiguity in daily life, Zadeh [I] extended the idea of
classical set theory by introducing the fuzzy set. Many direct and indirect general-
izations of the fuzzy set have been developed and effectively used in the majority of
real-world problems. Pattern recognition, decision-making issues, clustering analy-
sis, and medical diagnostics are just a few of the real-world applications where the
FS theory has been researched. Inadequate knowledge of the function’s negative
membership degree has, regrettably, led to the failure of the FS theory. In order
to solve this issue, Atanassov [2] included the negative membership degree of the
function in FS theory in such a way that sum of the positive membership degree
and negative membership degree must not exceed one. Liu [3] has studied fuzzy
ideals of a ring and many researchers extended this concept. Kim and Kim [4] gave
the notion of fuzzy ideals of near rings. The idea of “Intuitionistic Fuzzy set” as a
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generalization of fuzzy sets was given by Atanassov [2] in 1986. Biswas [5] studied IF
subgroups of a group using the concept of IF sets and extended to group theory. The
concepts of IF prime ideals and IF weak prime ideals in ring were developed by Hur
et al. [0] in a ring. Jun and Park [7] introduced the concept of IF N -subgroups of
a near ring. The features of IF ideals of near rings were also addressed by Jianming
and Xueling [8].

Very recently Asma Ali et al. introduced and studied group action on fuzzy ideals
of a near ring [9]. Lee and Park [10] studied group action on the IF ideals of a ring
R and derived a relationship between the IF G-prime ideals of R and the IF prime
ideals of R. In this paper we define group action on an IF ideals of near ring A/ and
study G-invariant IF ideals of A/, intrinsic products of IF ideals and G-primeness of
IF ideals of N. Hence extend the results of [10] in case of near rings.

2. PRELIMINARIES

For basic definitions of fuzzy ideals and anti fuzzy ideals of a near ring one may
be referred to [11].

Definition 2.1. Let Z be a nonempty set. Then an intuitionistic fuzzy set (briefly,
IF se)t M in Z has a form M = {(3,71(3),0Mm(3))}, where the functions na, o :
Z — [0, 1] signify the degree of membership and non membership respectively and
0<nm(3) +0mG) <L5€ 2.

For our simplicity we use M = (naq,da) for IF set M = {(3, 70 (3), M (3))]3 €
Z}in Z.

Definition 2.2. An IF set A = (n4,04) in a near ring N is called an intuitionistic
fuzzy ideal (briefly, IF ideal) of NV, if n4 and §4 are fuzzy ideal and anti fuzzy ideal
respectively.

Lemma 2.3. Let M = (a1, 0m) and N = (npr, dn7) be IF sets in a set S. Then we
define:

(1) MCN = (Vs €S)(nm(s) <nn(s), dam(s) = dn(s)),

2 M=N <<= MCN and N C M,

(3) MNON = (nmAnw, dmVon),
(4) MUN = mmVon, dmA\own)-

Definition 2.4. Let A = (n4,04) and B = (ng,dg) be two IF sets in a near ring
N. Then we define the product Ao B = (n405,0405) in N as follows:

V min{na(k),ns()} if n=kl

nAoB(n) = § n=kl
0 if n is not expressible as n = ki
and
N\ max{d4(a),dp(d)} ifn=ab
5o (n) i= { neab
1 if n is not expressible as n = ab.

We define the intrinsic product of two IF sets in a near ring A as follows:
Let A = (na,04) and B = (ng,05) be two IF sets in a near ring /. Then intrinsic
2
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product of A = (4,04) and B = (np,d5) is defined to be the IF set A *x B =
(NaxB,04x5) iIn N given by:

) nalar),nalaz), .., na(am)
UA*B(TL) = min
n= ;:/ a;b; {nB(b1)7nB(b2)’""77]B(bm)
finite
and
bas(n) = N\ max | A1) 04002), 0alam)
n— E aib; 66(()1),65(()2)7....755(bm)

finite

ifn = Zaibi for some a;,b; € N and m € Z* where each a;b; # 0. Otherwise
i—1
A% B=0.,1ie., nap(r) =0 and d4.5(z) = 1.

Lemma 2.5. Let K, £ and M be IF ideals of a near ring N'. Then
(1) K+ L is an IF ideal,
(2) K% (L M) = (K £) # M

Proof. (1) Let K = (nc,dx) and £ = (n,d.) be two IF ideals of A/. It means that
Nic,Ne are fuzzy ideals and dx,d, are anti fuzzy ideals. We know that I + L is
defined as follows:

K+ L = (nc+nc —nxne, 0xoc)-

If we show that ni + 1, — nene is a fuzzy ideal and dxd. is an anti fuzzy ideal, then
we are done. Since n and 7, are fuzzy ideals, for any u,v € N, we have
Nic+c(u— )
=nc(u—0) +ne(u—1v) —nc(u—0) ne(u—0o)
> min{nic(u), nc(v) } +min{ne (u), ne (o)} —min{ne (u), nc (o) }-min{ne (u), ne (o) b
> min{nic(u) + 1 (W), me(v) +n(0)} — min{ne(u) - ne(u), ne(v) -ne(o)}
> min{nec(u) +ne(w) — nc(w) - ne(u), (o) +ne(v) —ne(v) - ne(o)}
> min{nic (), ncr+c(v)}, ie.,

(2.1) Mic+c(u—0) = min{niic(u), ne+c(v)},
Ncrc(d+u—v)=nc(d+u—0)+nc(0+u—0v)—nc(o+u—0) n(0+u—0)
> mic(w) +ne(u) — e (u) - ne(uw)
> Nicrc(u),ie.,

(2.2) Nic+£(0 +u—10) > nictr(u),

Nic+c(uo) = i (o) + 7 (uo) — N (uv) - e (uv)
> nic(0) +ne(0) — nc(v) - ne(v)
= T})c_;,_/;(t)),i.e.,

(2.3) N+ (o) = nict£(v).
3
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Also for any u,b,a € N,
Nctc((u+a)p —uv) =ne((u+a)p —uo) + 9z ((u+ a)o —uv) — ne((u+ a)o — uv)
‘ne((u+a)p — uv)
> nic(a) +ne(a) —n(a) - ne(a)
= nk+c(a),ie.,

(2.4) e+ ((u+a)o —uv) > nieig(a).

Moreover, we will show that dx . is anti fuzzy ideal of N. Since §x and §. are anti
fuzzy ideals of N, we get

xc+c(u—1v)=dc(u—0) dc(u—0v)
< max{dx(u), (o)} - max{dc(u),c(v)}
< max{dx(u) - o (u), dc(v) - ne(o0)}

= max{dx1.(u), 0kt c(0)} de.,

(2.5) Sxc+c(uw—1v) <max{dcyc(u), oc4c(0)}

and

Oqc(0+u—v)=0g(do+u—n) -0(0+u—no)
< Oxc(uw) - 0z (u)

= dtc(u),ie.,
(2.6) dichc(0+u—0) <dgqo(u).
Also,
x4 (uv) = dxc(uv) - 6 (uv)
< dx(v) - 0z (v)
= Ok+c(v),i.e.,
(2.7) Sc+c(uv) < ey (v).

Furthermore for any u,v,a € N/, we have
Ok4c((u+a)p —uv) = o ((u+ a)o —uv) - 72 ((u+ a)o — uv)
< ox(a) - d.(a)
= 5;C+[;(a),i.e.,

(2.8) Oxcarc((u+a)o —uv) < dxarc(a).

Equations (2.1)—(2.4) show that i, is a fuzzy ideal and equations (2.5)—(2.8) show
that dxo . is an anti fuzzy ideal of . Then K + £ is an IF ideal of V.
(2) The proof runs on the same parallel lines as of proposition 3.3 in [7]. O
4
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Definition 2.6 ([12]). A map ¢: G x 3 — 3 defined by &(g,3) = g *3, is said to be
an action of group G on a set Z, if for all g,h € G, 3 € 3,

(i) g (hx3) = (gh) *3,

(ii) e x 3 = 3, where ¢ is an identity of G.
Definition 2.7 ([12]). If G is a group acts on a set X', then the set
Gz = {ax/a € G}
for x € X, is said to be an orbit of X in G.

We assume that G is a finite group acting on A" and define the group action on
an IF set of A as follows:

Definition 2.8. The group action of G on an IF set A of N is given by

A9 = {{z,na(29),64(29))| z€N,g€G}
where 9 means ¢ acts on x. For our simplicity, we write A9 as A9 = (944,040) if
A= (n4,04) where nas(z) = na(z?) and d4s(x) = d.a(2?).

Example 2.9. N = {m;, my, m3} is a near ring under following binary operations:

+ ‘ m; Mo mg . ‘ m; my mg
mp | m;p mg m3 mp mp o myp my
my | my m3z Wy me | m;p My mg
mz | m3 mp Mo mz | m; My M3

and G = Aut(N) = {7, f}, where J is an identity automorphism and automorphism
f is defined by

f(m1) = my,f(mz) =mz and f(mz) =my.
¢,6 : N —[0,1] defined by
C(m):{ 0.7 m=my 6(m):{ 0.3 m=my

0.6 m=my, mg, 0.4 m=my, m3.

¢ and § are fuzzy ideal and anti fuzzy ideal of N respectively, then F = ({, §) is an IF
ideal. Group action on fuzzy sets (9,89 : N’ — [0, 1] is defined as ¢9(m) = ¢(m9) and
d9(m) = 0(m¥) respectively. Under this action, we can easily see that A9 = ({9, 69)
is an IF ideal.

3. IF PRIME IDEALS

Definition 3.1. Let P = (np, dp) be an IF ideal of a near ring /. Then P is called
an IF prime ideal, if np,dp are not constant maps and for any two IF ideals A and
Bof N, Ax B C P implies that either A C P or B C P.

Example 3.2. Consider N'= {0,1,2,3} a near ring under binary operations addi-
tion modulo 4 and for any a;, as € N multiplication is defined as

as a 0
al.ag{ 02 aiiO.

5
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A = (m,61) and B = (12,82) are IF ideals, where fuzzy sets 11, m2,01,02 : ZyN —

0.9 a=0

[0,1] are defined by: for all a € N, n1(a) = 0.8 a#£0, ™

(a) = 0.9, 61(a) = 0.1

and dz(a) = { 8.1 Z ; 8 Here, B is an IF prime ideal of N.

Proposition 3.3. Let Q = (ng,dg) be an IF ideal of N. Then Q9 = (ngs,8gs) is
also an IF ideal.

Proof. From [Proposition 2 in [9]], ngs is a fuzzy ideal of . Then it remains to
prove that dos is an anti fuzzy ideal of A. Since §g is an anti fuzzy ideal of A/, for
any z,y € N, we have

dgs(z —y) =dg(r —y)? = do(2? —y?) < max(dg(z?),d0(y?)),i.c.,

(3.1) dgs(z —y) < max(dgs(x),00s(y)))

and

dga(wy) = dg(wy)? = do(2%y?) < max(dg(2?),d0(y?)),i.e.,

(3.2) dga(ry) < max(do(z?), 6o(y?))-

Equation (3.1) and (3.2) imply that dgs is an anti fuzzy subnear ring of N.
Again for z,y € N,

(3.3) dgo(y+x—y) =do(y? + a9 —y?) < dg(x)? = dgs(x).
For z,y € N, we have
(3.4) dge(zy) = dg(xy)? = do(29y?) < da(y?).

This implies that dgs is an anti fuzzy left ideal of A
Now, for z,y and i € N, we have

(3.5) dga((z + i)y —zy) = do((2? +i%)y? — 29y?) < o ().

Thus Q9 = (ngs,dgs) is an IF ideal of N. O

Proposition 3.4. Let Q = (ng,dg) be an IF prime ideal of N'. Then QY is also an
IF prime ideal.

Proof. Let A= (n4,04) and B = (n5,05) be two IF ideals of N such that Ax B C

Q9. By proposition 3.3, A9 and B9 = are also IF ideals of A'. Now, we claim

that A9 '« B9 C Q, ie., for A9 = (1 ga—1,0 44-1) and B = (Ngg—1+035-1),
6
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Mot oga—t S No and 8 4,1 p,—1 D dg. For every ne N, m e Z*

. Npg—1 (al)vn_Ag*I (a2)7"' s M pe—1 (am)
gt oo () = min
ATeB e ¥ aibs {7739—1 (01), a1 (b2), -+ s =1 (bm)
finite
—1 —1 1
_ V i {mx(a?_l )ona(a ). matad, )
1 ns(bf ),ms(b ), ns(bg, )

— -1
ny = a9 b9
> ai b
fimite

o . .
=nas(n? ) <ngs(n? ) =mng(n),ie.,

NAs—1spa—? (n) C g

and
4 g1 (CL )75 g1 (a )7 ,0 g1 (am)
St ()= f\ max{aA )5 (o) b (o)
n= 3, ajb; Bo~t\P1), 99— V2); » 9Bg=1 \Ym
finite

_ /\ max 5-A(a$17:1 )75-/4(0'%: )v 75-/4(&7?711_ )
ot op(by ),08(b3 ),---,08(b7, )

1 g—1
nd~ = > af b
finite

=648 ) > 60s(n? ) =6g(n),ie.,

(SAg—l*Bg—l (n) :_) (5Q.

This implies that A9 B! C Q. Since Q is an IF prime ideal, either A Cc o
or B9 C Q. Thus A C Q9 or B C QY. O

Following the definition of a G-invariant IF ideal of a ring [10], we define a G-
invariant IF ideal of a near ring.

Definition 3.5. Let A = (4,d4) be an IF ideal of . Then A is said to be a G-
invariant IF ideal of N, if nas(n) = na(n9) > na(n) and d4¢(n) = d4(n9) < da(n)
forallg € G and n € N.

Example 3.6. Consider N' = {my, my, m3, m4} a near ring under following binary
operations:

+ | m omy my my Cm omy mg omy
mp | m;p mg m3z My mpm o m;p o my my
me My mM; my m3 my | m; m; mp oy
mz | m3 My My my mz  m m; m; my
my | my m3z m; My my | m;p mp; My My

and G = Aut(N). Then IF set A = (n4,0.4) in N defined by n4(my) = 0.8, 5.4(m3)
0.6,m7.4(m3) = na(my) = 0.3 and d4(m1) = 0.2,54(m2) = 0.3,6.4(m3) = 5.4(m4)
0.7, is an IF ideal which is G-invariant.

Theorem 3.7. Let F be an IF ideal of N and F9 = Qg]:g. Then F9 is the largest
g

G-invariant IF ideal of N contained in F.
7
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Proof. Tt is clear that F9 is an ideal of A/, because
Fo(n) = 0,77 (n) = (nze(n), dre(n))
g
— (mi g S+(nIN).
(min(nr (n?)), max(07(n?)))

We know that an IF ideal F of N is G-invariant if and only if F = F 9. Assume that
G-invariant IF ideal £ contained in F. Then for any g € G and n € N, ne(n?) =

ne(n) < nr(n). Also ne(n9) = ne(n) =ne(n9)9 " < nzs(n9), we get

Also, 6¢(n9) = 0 (n) > 6x(n). Also 8¢(n9) = dg(n) = 6¢(n9)9 " > 6x4(n9), we get
(3.7) Je D brc.

By equations (3.6) and (3.7), £ C F9. This shows that F9 is the largest G-invariant
IF ideal of NV. O

The characterization of G-invariant IF ideals can be directly obtained from the
definition. This is summarized in the following remark.

Remark 3.8. An IF ideal F of N is G-invariant IF ideal of N/ if and only if F = FC.
Clearly follows by definition 3.5.

4. UNION OF IF IDEALS

Definition 4.1. If {F, = (n£,,07,)} is nonempty collection of IF sets of a near
ring NV, then the union of IF sets is defined as

el i€l i€l

where n(y 7, = Vnr and 0y 5, = AdF,.

i€l i€l i€l i€l

We know that the union of IF ideals of a near ring A is not an IF ideal of A/, in
general.

Example 4.2. Let S be a near ring. Then

{6

is a near ring with respect to matrix addition and matrix multiplication. Take

j1:{<0 G(,)Q) GQ,OES} and j2={<%1 8) al,OES}

ideals of N. Define maps i1, f12, 01,02 : N — [0, 1] by p1(x) = { 8'7 ; ; gl pa(z) =
1,

05 z€h )0 zehn _ )0 zelh
{ 0 xd di(x) = { 07 z¢ 7 and da(x) = { ' ~ Then
8

al,aQ,O € S}
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A = (u1,01) and B = (us2, d2) are IF ideals in N. But AU B is not an IF ideal in N,
since

0.7,0.5 U
T I+ v

. . o 0 as (a1 0 . _[—a1 a2
1snotafuzzyldealofN,forn<O O>andm<0 0),71 m< 0 0>¢
=0.5

J1 U Jo. We see that py U pa(n —m) =0, puy Ups(n) = 0.7 and pq U pg(m)
Thus

p1 U piz(n —m) = 0 # max{p1 U pz(n), p1 U pz(m)}
# max{0.7,0.5}
#0.7.
So p1 U pg is not a fuzzy ideal of N. Hence A U B not an IF ideal of N.

Lemma 4.3. Let P = (np,dp) and Q = (ng,dg) be two G-invariant IF ideals of
N. Then P * Q = (np«0,dpsa) s a G-invariant.

Proof. The proof runs on the same parrallel lines as that of Lemma 3.7 in [10]. O

Proposition 4.4. If {F,} is a chain of IF ideals of N, then for any x,y € N'
(i) min(\/{ne, (@)}, \/ {ne, (v)}) = \/{min(ne, (), 7e, (4))}-

and

max(/\ {6, ()}, A\{or, (1)}) = N\{max(ér, (x), 8r, (1))},

where F; = (nF,,07,), i € N and nr, <nr,,,, 6F, > 0F,,,-
Proof. Assume that v = max(A{or, (z)}, A{or, (v)}) < A{max(dr, (2),0Fr, (y))} =
v. Then Adr, (x), Ao, (y) < v. Thus there exist s and ¢ such that ép, () < v and

dr, (y) < v. So for some m(> s,t), 0p, (z) > dp, (x) and 0F,(y) > 0F, (y). Hence
max(0g, (x),dF, (y)) < v. Which contradict our assumption A{max(dr, (z),dr,

(y))} = v. On the other hand, suppose that v > v. Without loss of generality, we can
assume that u = A\(dp, (z)). Then there exist some m such that max(dp, (x),dr,, (y)) <
u. This contradiction to the fact u < dg, (z). The equality (i) follows by Proposition
3 in [9]. O
Theorem 4.5. Let {F,} be a chain of IF ideals of near ring N'. Then UF, is an
n

IF ideal of N.

Proof. Let A,, = (na,,04,) be an IF ideal, where 14,04, are fuzzy ideal and anti
fuzzy ideal of N respectively. Then from [Theorem 2 in [9]], n y , is a fuzzy ideal

nel
of M. Moreover, by using proposition 4.4, we can easily prove that § | # is an anti
nel
fuzzy ideal. Thus UF, is an IF ideal of N. O
9
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5. IF G-PRIME IDEALS

Definition 5.1. Let P be the non constant G-invariant IF ideal of A/. Then P is
said to be an IF G-prime ideal, if for any two G-invariant IF ideals A and B of N
such that A * B C P implies that either A C P or B C P.

Example 5.2. Let M(25) = {f|f : Z22 — 25} be a near ring under pointwise addi-
tion and multiplication as composition of functions, i.e., M(Z3) = {0, ¢, f, g}, where
0,4 are zero and identity maps respectively and f, g are defined as f(0) =1, f(1) =0
and ¢g(0) = g(1) = 1. Let IF set A = (n4,04) defined by n4(0) = 0.8,n4(e) =
0.6,74(f) =na(g) = 0.3 and 64(0) = 0.2,54(e) = 0.3,04(f) = d4(g) = 0.7. Then
it is easy to show that A = (nu4,d4) is G-invariant. IF set B = (np,05) in N/ de-
fined by ng(0) = 0.7,n98(e) = 0.5,n5(f) = nr(g) = 0.2 and Jp(0) = 0.3,d5(e) =
0.4,05(f) = d(g) = 0.8 is also G-invariant. We can see that A x B C A. Thus A is
a G-invariant prime ideal.

Proposition 5.3. If N is a zero symmetric near ring and Ay, As,--- , A, are IF
ideals of N, then

Apx Agsoox Ay C A N A 02N A,

Proof. Let A; = (na,,04,) be IF ideal of N. Then intrinsic product A; * Ay =
(77A1 *.A276.,41 *.Az) in N is given by

. A, (al)vnfh (a2)7"' y 1A, (am)
NAy«A, () = min
e ¥ aib; {17-/42([)1)77’./42(1)2)? to 777A2(bm)7
finite
5.A A (TL) _ /\ max 6-/41(0‘1)75441 (G’Q)’ t 7§A1 (a‘m)
s 05 (b1), 0., (b2), -+ 6.4, (brm)

finite
and
Al N -/42 = (min(nfh y 77.»42)7 max(6A1 ) 5442 ))
We have to show that 14,4, C min(na,,na,) and 4,44, C max(d4,,04,). We
prove this result by method of mathematical induction.
For p =1, it is obvious.
For p = 2, Ay = (Na,,04,) and As = (n4,,04,). Let n be expressible as n =
a1by + agbs + -+ + apbyy,, where a;,b; € N and a;b; # 0. Then
min{nAl (a1)7 A, (al)v A (am)a NA, (b1)7 1Ay (b2)7 s TAy (bm)}
< min{n.Az (bl)a A, (b2)7 oy NAy (bm)}
Since 1.4, is fuzzy ideal, we have

min{nA2 (bl)a NAs (bZ)v A, (bm)} < min{n»Az (albl)a TIAs (a2b2>7 A, (aﬂlbm)}
< na,(arby 4+ agba + - - + ambr), i,

(5.1)
min{n-Al (al)v NA, (a‘l)’ Ay (am)7 NA; (b1)7 1A, (bQ)v s TAy (bm)} < N4, (n)
10
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and

min{??Al (al)v NA, (al)’ A (am)v NA, (bl)v 1Ay (bQ)v A,y (bm)}
< min{n«‘h (a1)7 Ay (a2)’ AL (am)}'

Since N is a zero symmetric near ring and 74, is a fuzzy ideal, we get
min{TlAl (al)a Ay (aQ)v Ay (am)}
< min{n4, ((0+a1)by — 0b1), .4, ((0+ az)bz —0b2), - -+, 1.4, ((0+ am)bn — 0bra ) }
<N, (a1by + agby + -+ + ambp).
Thus
(5.2)
min{??Al (al)v A, (al)v Ay (am)a NA, (bl)v NAs (b2)7 s TAy (bm)} < na, (TL)

Furthermore, we get
max{6A1 (a'l)’ oA, (al)v w04, (am)’ 0.4 (bl)’ 04, (b2)’ 04, (bm)}
> ma‘X{aA’z (bl)’ 5A2 (b2)7 T 5A2 (bm)}
> maX{(S.Az (albl)7 6/12 (a2b2)7 A, (ambm)}
Z 5A2 ((lel —+ a2b2 + -+ ambm), i.e.,

(5.3)
maX{(SAl (al)a 6.»42 (al)v o 75/11 (am)a 6.»42 (b1)7 5/\2 (bQ)a T 76.42 (bm)} > 6.42 (n)
and
maX{6A1 (al)’ 5-/41 (al)’ T 76A1 (am)’ 5-/42 (b1>7 5A2 (bQ)a U 7§A2 (bm)}
> max{04, (a1),04,(az), - 04, (am)}
> maX{5A1 ((O+a1)b1 - Ob1)7 5.»41 ((O+a2)b2 - 0b2)7 to 77]A2((0+a'm)bm _Obm)}
> 04, (a1by + azba + - - + ambn,), ie.,
(5.4)
max{(sfh (a’l)’ 6-»42 (al)v T 75-/41 (a‘m)7 6-»42 (b1)7 6./42 (bQ)v o 75-/42 (bm)} > 5-»41 (n)

It follows from the equation (5.1) that

. UAl(al)aUAl(@)»'” 777A1(am)
TAx Az (n) = min
o ;:/ a;b; {77-/42 (b1)7 NA, (b2)7 Ay (bm)
finite
< min{n4, (a1),m4,(a2), -+ ,1m4, (@n), 14, (b1),m.4,(b2), -, 0.4, () }
< na,(n),i.e.,
(55) NA A (TL) < NA, (n)

and from the equation (5.3),

S A e (n) _ /\ max 6-/41 (a1)76¢41 (a2)7 to 76.»41 (am)
S 04 (0). 8, (ba). 6, ()
finite
> max{(S.Al (a1)7 5/11 (aQ)a o 75.41 (am)7 5./42 (bl)a 6.42 (62)7 to 75A2 (bm)}
> 04,(n),t.e.,

11
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(5.6) Oareas () = 6.4, (n).
Similarly, we can show that

(57) NA;x Ay (TL) < N4, (n)
(5.8) 0wy (1) 2 04, (1)

From the equations (5.5), (5.6), (5.7) and (5.8), n4,x4,(n) < {na, (n),n4,(n)} and
S 4,54, (n) > max{d4, (n),04,(n)}. So Ay x Ay C A3 N As.
Now assume that it is true for p = k. We have to show that it will be true for
k+ 1.
Let n € M. Then we have
min{nAl*Az*-“*Ak (al)v NArx Az x Ay, (a2)a o NA e Ag ek Ay (am)v
N A1 (bl)v NAkt1 (b2)v A (bm)}
< min{??Ak+1 (bl)’ N A1 (b2)7 s A (bm)}
< min{??Ak+1 (a1b1)7 NAki1 (a2b2)’ o NA (ambm)}
< N Apss (a161 + agby + -+ - + ambm).
Thus we get
(5.9)
min{nA1*A2*~--*Ak (a1)7 T Ak Ag e Ay (am)7 NAk41 (b1)> NAk11 (b2)7 o NA (bm) < NAk41 (TL)
Since 14, is fuzzy ideal for all 1 <14 < p, we have
min{nA1*.A2*--~*Ak (a1), TJAx Aok Ay, (az),--, NA x Agx---x Ay, (am),
NAg41 (bl)’ NAk41 (b2)7 s AR (bm)}
< min{na, wdg s Ay, (G1)5 AL Aorev A, (A2)5 s DAL Agne v Ay (Qm)
< min[min{nfh <a1)7 NA, (a1>7 s NA (al)}’ e 7min{77A1 (am)a NA (am)7 Ty NA (a’m)}]
< min[min{n., (0 + a1)by — 0b1),- -+, 7.4, ((0+ a1)by — 0by)}, -, min{na, (0 +
m)bm — 0bp ), -+ M4, ((0 4 )b — 00y }]
< min[min{W\l (albl)a Ty A (albl)}v T >min{77./41 (ambm)v A (ambm>}]
< min{n4, (a1by1+agbe+- - -+ ambm ), N4, (a1b1+a2bo++ - - +ambp), - -+ 14, (a1b1+
asby  + -+ ambn)}, i,

(5.10)
min{n-Al*”'*Ak (a1)7 oy MA ke x Ay (aTn)v NAk 41 (b1>7 N A1 (bQ)’ s NAg g (bm)} < min{n«‘h (n), o TA, (n)}

NApxAgs 5 A Ap 1 (’I’L) < min{??Al x Aok x Ag (n)7 NAk41 (n)}

< min[min{TIAl (Tl), NA, (n)v s NA (n)}7 NAk+1 (Tl)}
< min{??Al (n)v A, (n)a oy TAg (Tl), NAk+1 (n)}
It follows from the equation (5.10),
MAswd A)A (n) _ \/ min NA * Agx---x Ay, (al)a NAL A Ay (G'Q)v s TMA Ak Ay (am)
e g e n= S aib; NA 41 (b1)7 NAR 1 (b2)7 oy MARL (bm)
finite
< min TNA x Aok Ay (al)a TNA x Aok x Ay, (a2)a Ak Agkex Ay (a’m)
NAk41 (bl)a T Ak41 (bQ)’ s NAg (bm)
S min{nv‘h (n)a NA, (n)7 oy NAR (n)}

12
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ie.,

(5.11) Ay Ags e Ap)x Agsr (1) < min{na, (n), 4, (), -+ 0.4, (n)}
In the similar manner

(5'12) N(Arx A5 Ap)* A y1 (n) < NAk41 (n)

By equations (5.11) and (5.12),

(5:13) M(AyxAgn- v Ap)x Aiyr (7) < min[min{na, (1), 1.4, (n), -, n4, (M)}, Nas, (0)].
Also,
MaxX{ A, « Agwe Ay (A1) 04w Agre oAy (02)5 77+ 3 Oy dgwerwdyy (Am )y Oty y (B1), Mty (D2), -+, 04,y (brn) }
> max{O4, s« Agse Ay (@1), OA s Agnev Ay (@2)5 7+ 5 O 4w Agin Ay, (@)
> max[max{d4, (a1),04,(a1), - ,04,(a1)}, - ,max{04,(am),04,(am), - 04, (am)}]
> max[max{da, ((0+ a1)by — 0b1), -+ ,9.4, ((0+ a1)by — 0b1)},..,max{d4, ((0 + am)bm — 0by), ..
vy 04, (0 + @y )by, — 0by ) }]
> max[max{da, (a1b1), ..., 04, (a1b1)}, .., 4, (@mbm),s -y I 4, (Amb)]
> max[max{d 4, (a1b1), 04, (a2b2), ..., 0.4, (a1b1)}, .., 0.4, (@mbm), ., 0.4, (Gmbm)]
> max{d4, (a1b1 + agbs + - - - + ambm), 04, (@101 + agbs + - -+ + ambnm), .., d 4, (a1b1 + azbs
+ -+ ambm)}
i.e.,
(5.14)
max{éAl*Az*...*Ak (al), 5A1*.A2*---*Ak (ag), ceey 5A1*.A2*---*Ak (am), 5A1€+1 (bl), 6-»4194-1 (bg), ceey 6-»4194-1 (bm)}
> max{d4,(n),04,(n),..,04,(n)}.

Now,
6.,4 s Aok A (a1)76./4 s Agx--k A (a2); ---76_,4 * Agx--k A (am);
6,41*«42*“'*.»4' * A 1(”) = max e § e y r "
( S n— é\ a;ib; 5Ak+1(b1)55Ak+1(b2)5 ""aéAk+1(bm)7
finite
> max 5A1*A2*~~~*Ak (a1)7 6A1*A2*~~~*Ak (a2)7 ceey 6A1*A2*~~~*Ak (am)7
5Ak+1 (b1)7 6Ak+1 (b2)7 [EEE) 5.Ak+1 (bm)’

> max{d, (n),04;,(n), ... 0.4, (n)}
ie.,
(5'15) 5(.41 s Agsek A ) x A1 (n) > max{5A1 (n)v 5-»42 (n)v seeey §-Ak (n)}
and
(5‘16) 5(-A1*-A2*'“*-Ak)*-Ak+1 (n) > 6Ak+1 (n)

So, by equations (5.15) and (5.16)
5(A1 w Agxek Ap )k Ap 41 (TL) > max[max{5A1 (n)7 5-»42 (n)7 ) 5-Ak (n)}v 5Ak+1 (n)]
> max{afh (n>7 6A2 (n)7 R 6»Ak (n)7 6Ak+1 (n)}

(517) 6(.»41 s Agse ok A ) x Ap 41 (n) > maX{(S-Al (n)a 5-/42 (n)a EX) 5Ak (n)a 5-Ak+1 (n)}
13
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From equations (5.13) and (5.17)
A *AQ*"’*AP g./hm.Agm"'ﬂAp.
g

Theorem 5.4. If Q is an IF prime ideal of N. Then QY is an IF G-prime ideal
of N. Conversely, if P is an IF G-prime ideal of N, then there exists an IF prime
ideal @ of N such that QY = P, where Q is unique up to its G-orbit.

Proof. Suppose that Q is an IF prime ideal of N' and Q;, O are G-invariant IF
ideals of A such that Q1 * Qo C QY. Since QY C Q, it follows that Q; * Qy C Q.
Then the primeness of Q implies that either @1 C Q or Qs C Q. By Theorem 3.7,
either Q1 € QY or Qs C Q9. Thus QY is IF G-prime ideal.

Conversely, suppose that P is an IF G-prime ideal of N and consider

T = {A,an IF ideal of N|AY C P}.

Since PY C P, then T is not empty. Let C = {A;} be chain of IF ideals of A in
T. Then UA; is an IF ideal of A. Furthermore, (UA;)9 C P. Let UA; = (1,6) and
P = (np,dp). Then n = \/nu, and § = Ad.a,, where A; = (na,,d4,). For every

ne./\/,

" geg

g(n) = mln(\/(mu (ng)))
= \/(Igleig(mi (n9)))

< np(n),

since each AY C P. Also

o) = (A, )

geg

= [\ (max(d4,(n?))
/\ geg A )

> 6P( )7

By Zorn’s lemma, let Q be a maximal IF ideal and By, By are IF ideals of A/ such
that By x By C Q. Then (By x B2)9 C Q9 C P, since BY x BY C By * By and BY x By
is G— invariant,

Blg * Bg Q (Bl * Bg)g.

Thus Blg *Bg C (By %B3)Y C P implies Blg CPor Bzg C P. By the maximality of Q,
either By C Q or By C Q. So Q is IF prime ideal. Since P C Q,PY C QY, QY =

Let there exist another IF prime ideal M of A/ such that ME =P. Also * QY C
geg

gQg = QY9 C M, Q9 C M forsome g € G by the primeness of M. Then Q C MY o
ge

and Q@ = M9 " since (M9 )9 = MY C P implies that M is contained in the set
T. Thus Q is unique upto G- orbits. O
14



Ali et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, Xxxx—xxx

6. CONCLUSION

The exploration of IF prime ideals of near rings is an evolving field of study with
many potential applications. In this manuscript, we have introduced and investi-
gated group action on IF ideals of near ring. Furthermore, we have shown that how
an IF prime ideal is related to IF G-prime ideal of A/. In future, we may extend this
work for more general structure like picture fuzzy ideal of near ring, intuitionistic
fuzzy ideal of semi rings.

Data Availability Statement: There is no data set that relates with this manu-
script.
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